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Abstract

A micro–macro algorithm for the calculation of polymer flow is developed and numerically evaluated. The system being
solved consists of the momentum and mass conservation equations from continuum mechanics coupled with a micro-
scopic-based rheological model for polymer stress. Standard finite element techniques are used to solve the conservation
equations for velocity and pressure, while stochastic simulation techniques are used to compute polymer stress from the
simulated polymer dynamics in the rheological model. The rheological model considered combines aspects of reptation,
network and continuum models. Two types of spatial approximation are considered for the configuration fields defining
the dynamics in the model: piecewise constant and piecewise linear. The micro–macro algorithm is evaluated by simulating
the abrupt planar die entry flow of a polyisobutylene solution described in the literature. The computed velocity and stress
fields are found to be essentially independent of mesh size and ensemble size, while there is some dependence of the results
on the order of spatial approximation to the configuration fields close to the die entry. Comparison with experimental data
shows that the piecewise linear approximation leads to better predictions of the centerline first normal stress difference.
Finally, the computational time associated with the piecewise constant spatial approximation is found to be about 2.5
times lower than that associated with the piecewise linear approximation. This is the result of the more efficient time inte-
gration scheme that is possible with the former type of approximation due to the pointwise incompressibility guaranteed by
the choice of velocity–pressure finite element.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Micro–macro simulations; Viscoelastic flow; Polymeric fluids; Planar die entry domain
1. Introduction

The accurate simulation of polymer flow in complex flow domains relies crucially on the ability of the rheo-
logical model to describe accurately the stress–strain relationship in the fluid. Rheological models for
polymeric fluids can be formulated at different levels of description, e.g., the atomistic level, the mesoscopic level,
and the continuum (or macroscopic) level. Atomistic modeling, which contains the most detailed description of
the polymer, is currently not suited for macroscopic flow calculations due to prohibitively large computational
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requirements. On a larger scale, the more coarse-grained mesoscopic models attempt to describe the configura-
tions of the macromolecules and their evolution in flow. The polymer stress is then expressed as a function of these
dynamics and involves appropriate probability distribution functions. Examples are models from polymer
kinetic theory, such as bead-spring models, network models and reptation models [7]. On the macroscopic level,
continuum models appear in closed form, usually as an integral or a set of differential equations relating the poly-
mer stress to the strain history. Although many continuum models are derived from, or based on, mesoscopic
models, simplifying assumptions and closure approximations are needed to go from the mesoscale to the macro-
scale, and this can affect the models’ predictions.

Computationally, continuum models are the best suited for implementation into a flow simulation algo-
rithm, and this is the usual approach in computational viscoelastic fluid dynamics. Unfortunately, polymeric
fluids are rheologically too complex to be universally described by continuum-level models, particularly in
complex flow domains. This has been shown repeatedly in the literature by researchers who compared exper-
imental data with flow simulations using these models. Moreover, these models offer no information about the
configuration of polymer molecules, and therefore cannot be used to study the relationship between the flow
process, the flow-induced microstructure, and the fluid rheology.

Mesoscopic models allow the inclusion of more physically-based information on the polymer dynamics and
are therefore more appropriate for model development than continuum models. However, traditionally they had
not been suitable for implementation into a flow solver. In the late 1980s and early 1990s, the first micro–macro
methods for polymer flows were introduced [5,8,24,30,31]. Micro–macro methods couple a coarse-grained
molecular model (i.e., mesoscale model) with the macroscopic conservation equations from continuum mechan-
ics. The resulting multiscale, or micro–macro, algorithm often relies on stochastic simulation techniques to com-
pute polymer stress from the molecular-based model and standard CFD methods, such as finite elements, to
compute velocity, pressure (and perhaps temperature) from the conservation equations. Since their introduction,
micro–macro methods have continued to develop steadily, e.g., [1,9,14,15,17–19,21,23,28,34], although their use
and applicability lag behind the more established and developed conventional macroscopic methods which rely
on continuum models. The current state of micro–macro simulations and additional references can be found in
the recent review article of Keunings [22].

The purpose of this paper is to evaluate and modify a micro–macro algorithm which was recently intro-
duced by Feigl and Senaratne [9]. The rheological model considered is multiscale, combining aspects of net-
work and reptation theories for concentrated polymer solutions and melts with continuum models [11,12]. The
original algorithm uses a piecewise constant spatial approximation to the configuration fields defining the
dynamics of the rheological model. As discussed in the current paper, this allows an efficient second-order time
integration scheme due to the pointwise incompressibility resulting from our particular velocity–pressure finite
element. In the modified algorithm presented here, a higher order spatial approximation to the configuration
fields is used along with a second-order time integration scheme. The performance of the algorithm with both
types of approximation is evaluated numerically in an abrupt planar die entry domain for a concentrated poly-
isobutylene (PIB) solution. Based on this evaluation, it is found that a combination of the two approaches
would lead to a more optimal algorithm. The simulation results are also compared to the experimental data
of Quinzani et al. [32] who measured the centerline velocity and normal stress difference in slit-die entry exper-
iments with this fluid.

The remaining of the paper is organized as follows. In Section 2, a brief description is given of the rheo-
logical model and concentrated PIB solution considered in this paper. The solution algorithm for the model
in homogeneous flow is also given along with some predictions of the fluid’s material functions. The micro–
macro algorithm for solving the resulting coupled, multiscale model for polymeric flow is detailed in Section 3.
The performance of the algorithm is evaluated in Section 4 where simulation results are presented for the
abrupt planar die entry domain, and comparisons are made to the available experimental data in a slit-die
entry domain. A summary and conclusions are given in Section 5.

2. Rheological model

The incompressible flow of a polymeric fluid under isothermal conditions is governed by the mass and
momentum balance equations
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r � u ¼ 0; ð1Þ

q
ou

ot
þ ðu � rÞu

� �
¼ �rp þr � s; ð2Þ
where u is the velocity, q is the constant density, p is the pressure, and s is the extra-stress tensor which may be
written as s = sp + ss, where sp represents the contribution from the polymer and ss represents the contribu-
tion from a Newtonian solvent (if present). The Newtonian contribution ss is given by ss = gs[j + j�], where j

is the transpose of the velocity gradient tensor, gs is the solvent viscosity, and � represents the transpose. The
rheological model for sp is taken to be a multiscale model introduced by Feigl and Öttinger [11,12], which is
briefly described below.

2.1. Model description

The dynamics of the macromolecules are modeled by (i) two stochastic processes which describe the con-
figuration vectors of the macromolecules, (ii) a probability density function which describes the lifetime of
each vector, and (iii) evolution equations which describe the motion of the configuration vectors in the flow
field during their lifetimes. More specifically, the dimensionless configuration vectors, Q1(t) and Q2(t), are
Gaussian stochastic processes whose interpretation is based in network theory and reptation theory, respec-
tively, of polymer melts and concentrated polymer solutions. The former represents the end-to-end configu-
ration vector describing the temporary macromolecular entanglements in network theory [7], and the latter
represents anisotropic tube cross-section from reptation theory [27]. These vectors are repeatedly created,
allowed to evolve in the flow field, destroyed, and then regenerated. During their lifetimes, s1 and s2, they
evolve according to the equations of motion
dQ1ðtÞ
dt

¼ j �Q1ðtÞ; t0 < t < t0 þ s1; ð3Þ

dQ2ðtÞ
dt

¼ �jy �Q2ðtÞ; t0 < t < t0 þ s2; ð4Þ
where t 0 is the creation time of the vector. Initially (at time t = t 0 = 0) and at subsequent creation times (t = t 0)
each vector has mean ÆQi(t

0)æ = 0 and covariance ÆQi(t
0)Qi(t

0)æ = d, i = 1,2, where d is the 3 · 3 unit tensor. The
lifetime, s, of each configuration vector is determined by a probability density function, /(s), which is related
to the fluid’s linear viscoelastic memory function, m(t � t 0), via
Z 1

t�t0
/ðsÞds ¼ mðt � t0Þ

mð0Þ .
Computationally, a more convenient expression for s, obtained by a coordinate transformation, is given by
zðsÞ ¼ 1� mðsÞ
mð0Þ ; ð5Þ
where s = t � t 0 and z 2 [0,1) is a uniformly distributed random number. Typically, the Maxwell linear visco-
elastic memory function is used, which has the form
mðt � t0Þ ¼
XN

k¼1

gk

k2
k

e�ðt�t0Þ=kk ; ð6Þ
where {kk,gk} is a set of relaxation times and partial viscosities of the fluid.
The polymer stress tensor sp is then expressed as the expectation of a function of these dynamics as follows
spðtÞ ¼ Gð0ÞŝpðtÞ;
ŝpðtÞ ¼ hf1ðQ2

1;Q
2
2ÞQ1ðtÞQ1ðtÞ þ f2ðQ2

1;Q
2
2ÞQ2ðtÞQ2ðtÞi;

ð7Þ
where ŝp is the dimensionless form of sp, the factor G(0) is the value of the relaxation modulus, G(t � t 0), at
t = t 0, and f1 and f2 are scalar functions of Q2

i ¼ traceðQiQiÞ; i ¼ 1; 2. The exact form and parameters in the
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strain functions can be chosen to fit the material functions of a given fluid. The only condition on these func-
tions is that they must satisfy a constraint to ensure that the correct linear viscoelastic behavior is predicted.
This constraint is
Table
Relaxa
contrib

k

1
2
3
4

gp

gp þ gs

¼ 1

3
hQeq2

1 f eq
1 � Qeq2

2 f eq
2 i0 þ

2

15
hðQeq2

1 Þ
2f eq

1;1 � ðQ
eq2
2 Þ

2f eq
2;2i0; ð8Þ
where gp is the polymer contribution to the zero-shear-rate viscosity g0 = gp + gs, Qeq2
i � ðQeq

i Þ
2 denotes the

value of Q2
i at equilibrium, f eq

i ¼ fiðQeq2
1 ;Qeq2

2 Þ and f eq
i;j ¼ ofiðQeq2

1 ;Qeq2
2 Þ=oQ2

j for i,j = 1,2. The notation ÆÆæ0

indicates taking a Gaussian average in six-dimensional space with respect to the Gaussian probability density
in six-dimensional space with mean 0 and square of the width d. If these integrals are written in spherical coor-
dinates, then they can be reduced to integrals in two-dimensional space, since the angular integrations can be
performed analytically. Further details of the model, along with its ability to predict well the material behavior
of polymer melts, can be found in Refs. [11,12].

2.2. Material description and simulation algorithm in homogeneous flow

The fluid simulated was a concentrated polymer solution, specifically, a 5% polyisobutylene (PIB) solution
in tetradecane at 25C described by Quinzani et al. [32,33]. This fluid was chosen since it has been characterized
in various viscometric flows [33] and has been used in abrupt slit-die entry experiments in which centerline
velocity and stress measurements were taken with laser doppler velocimetry (LDV) and flow-induced birefrin-
gence (FIB), respectively [32]. It therefore allows some comparison between micro–macro simulation and
experiment in terms of both velocity and stress.

A rheological model of the form in Eq. (7) was previously derived for this PIB solution by Feigl and Sen-
aratne [9]. It uses the Maxwell memory function, Eq. (6), with a relaxation spectrum determined by Quinzani
et al. [33]. The spectrum is restated in Table 1. The strain functions are
f1ðQ2
1;Q

2
2Þ ¼

1

a0 þ a1Q2
1 þ a2Q2

2

; f 2 � 0;
where a0 = 0.635, a1 = 0.040 and a2 = 0.038 were chosen to satisfy the small deformation constraint, Eq. (8),
and to provide good predictions to the material functions of the PIB solution.

The simulation algorithm used to compute the material functions in homogeneous flow can be briefly
described as follows. Let fQk

1ðtÞg
Np

k¼1 and fQk
2ðtÞg

Np

k¼1 represent two independent ensembles for the random vari-
ables Q1(t) and Q2(t), respectively, where Np represents the size of the ensembles, and let t = T denote the time
at which polymer stress is to be computed. For k = 1, . . . ,Np, repeat the following three steps until time t = T

is reached:

1. Randomly generate a lifetime sk
i for Qk

i from Eq. (5). Since the Maxwell memory function in Eq. (6) is used,
then for each mode the expression for z(s) can be solved analytically for s. In this case, simulations can be
performed separately for each relaxation mode and the results added together [12]. Alternatively, one life-
time can be generated from the entire spectrum by using Newton’s method to solve this nonlinear equation
for s given a specified value of z. A good initial guess can be found from a piecewise function approximation
to s(z). For the fluid under consideration, these two methods produced virtually identical results. In the
micro–macro simulations in this study, the latter approach is adopted.
1
tion spectrum for PIB solution at 25C (zero-shear-rate viscosity g0 = 1.4258 Pa s; solvent contribution gs = 0.002 Pa s; polymer
ution gp = 1.4238 Pa s)

kk (s) gk (Pa s)

0.0059 0.5850
0.0389 0.5664
0.1396 0.2324
0.6855 0.0400
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2. Randomly generate Qk
i according to a Gaussian distribution with mean 0 and covariance d, for i = 1,2.

3. Evolve Qk
i according to the corresponding equation of motion for the duration of the lifetime sk

i , for i = 1,2.
For homogeneous flow, a first-order explicit Euler method was used to integrate Eqs. (3) and (4). This
method is exact in simple shear flow.

When time t = T is reached, the values of Qk
1 and Qk

2 are substituted into Eq. (7) for each k and averaged
over all k to obtain the dimensionless ŝp. A variance reduction technique based on equilibrium control variates
was employed to reduce the statistical errors at low shear (or deformation) rates. For the transient calcula-
tions, an ensemble of Np = 107 trajectories was used for each configuration vector. Material functions in
steady flows were computed using the principle of ergodicity [29] in which a long single trajectory is tracked
over a large simulation time. In each case, vectorization was used to reduce the computational time.

Comparisons of the model’s predictions in viscometric flows with experimental data showed that the model
describes well the material functions of the fluid [9]. An example of this comparison is shown in Fig. 1(a),
where the predicted and measured shear viscosity, g, and first normal stress coefficient, W1 ¼ ðs11 � s22Þ=_c2,
in steady simple shear flow are shown as functions of shear rate _c. A nonzero normal stress ratio, �W2/W1,
was also predicted in steady shear flow, where W2 ¼ ðs22 � s33Þ=_c2, is the second normal stress coefficient. Pre-
dicted values ranged from approximately 0.10 at low shear rates ð _c ¼ 0:1 s�1Þ down to 0.025 at higher shear
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Fig. 1. (a) Comparison of model predictions of steady-state shear viscosity, g, and first normal stress coefficient, W1, with experimental
data of Quinzani et al. [32] for the PIB solution. The dashed horizontal lines indicates the zero-shear-rate viscosity, g0, and the zero-shear-
rate first normal stress coefficient, W1,0. (b) Model predictions of steady uniaxial elongational viscosity. The dashed horizontal line
indicates the Trouton viscosity, 3g0.
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rates ð _c ¼ 700 s�1Þ. Due to the difficulty in measuring W2, there is little experimental data on the normal stress
ratio of polymeric fluids. The limited experimental data which does exist indicates that the normal stress ratio
typically has a magnitude of about 10%, and values for polymer solutions have been measured in the range of
0.01–0.20 [6,25]. The values predicted by the current model lie within this range.

Fig. 1(b) shows that the model also predicts the correct qualitative behavior of elongational viscosity, g, in
steady uniaxial elongational flow, including strain-hardening.

The statistical error bars in these calculations were very small, and are not visible in the figures. Because the
errors are so small, the values computed by the above simulation algorithm can be regarded as ‘‘exact’’ values
of the model predictions in these homogeneous flows. These values can be used for comparison with the
micro–macro simulation results presented later. For reference, the simulation algorithm for homogeneous
flow described above is referred to as the standard simulation algorithm.

3. Micro–macro algorithm

The micro–macro simulation procedure for solving the governing system of equations follows a decoupled,
iterative approach. The velocity and pressure fields are computed in one step, in which the divergence of the
extra-stress appears as a pseudo-body force from a previously computed stress tensor. In the next step, this
velocity field is then used to compute an updated extra-stress tensor s = sp + ss from the rheological model
for the polymer stress contribution, sp, and from the solvent contribution, ss. These two steps are repeated
until the relative change in velocity and stress tensor components lie below some preset tolerance. Specifically,
the convergence criteria are ||fn � f n� 1||/||fn|| < �, where f represents the nodal values of either velocity or a
component of the extra-stress tensor, and the subscripts indicate the iteration. In this study, a tolerance of
� = 10�4 was used for velocity and � = 10�3 was used for each component of the extra-stress tensor. For steady
flow problems, the initial guesses for the velocity u and pressure p are taken to be the solution to Stokes flow or
the solution at a lower flow rate or Deborah number. A description of the individual parts of the simulation
procedure is given below.

The macroscopic part of the algorithm consists of computing the velocity and pressure fields by solving the
mass and momentum balance equations, Eqs. (1) and (2), using standard finite element techniques. This part
of our algorithm is well established and details can be found elsewhere [2–4]. Therefore only a brief description
is provided here.

The finite element method is applied to the penalty formulation, in which the incompressibility condition,
Eq. (1), is replaced by a penalty equation �p + $ Æ u = 0. The finite element used is the crossed triangle mac-
roelement [2–4,26], consisting of a quadrilateral divided into four triangles by its diagonals. The velocity
approximation is piecewise linear in each triangle and continuous over the domain, and the pressure approx-
imation is piecewise constant in each triangle (by the penalty equation). An attractive feature of the discrete
velocity approximation of the crossed triangle macroelement is that it is pointwise incompressible (almost
everywhere). This feature will be exploited later.

Regardless of whether or not a transient calculation is being performed, the time derivative terms, qou/ot, in
the momentum equation are retained, so that the spatial discretization produced by finite element method
yields a system of ordinary differential equations. This semi-discrete system is then solved using a time-march-
ing scheme, specifically a one-step, predictor–corrector method described by Hughes et al. [20]. A proper
choice of integration parameters in this scheme can accelerate the convergence and improve the efficiency
of the overall iterative process. For steady-state problems, such as the one considered in this study, the tran-
sient behavior is not required, and experience has shown that an efficient choice of (macroscopic) time step is
dt = 1 with one update of velocity, pressure, and stress being performed in each time step. The previously sta-
ted convergence criteria ensure that time effects in the macroscopic flow (e.g., acceleration) have been damped
out and that the steady state has been reached.

In any given time step, quantities such as the velocity gradient, the pressure field and the stress fields are, by
choice of approximations, discontinuous across element boundaries. Therefore, at any time where smooth
fields are desired, such as at the end of a flow simulation once the steady solution has been reached, postpro-
cessing is applied to obtain continuous fields over the domain. This is done by projecting each of these quan-
tities onto the space of continuous, piecewise bilinear polynomials, based on the vertices of the quadrilateral
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macroelements. To monitor the convergence of these quantities from one iterate to the next, smoothing was
performed after each (macroscopic) time step. This procedure generally works well, except possibly at nodes
along the boundary of the computational domain. Extrapolation techniques are used to improve the smoothed
nodal values on the boundary. Details of the postprocessing can be found in Refs. [4,20].

Bernstein et al. [2] established analytical convergence results for the crossed triangle element with postpro-
cessed pressures in both planar and axisymmetric geometry. Moreover, this element and the above-described
numerical methods have been used in standard macroscopic finite element simulations of polymer flows in
which the polymer stress was described with an integral viscoelastic constitutive equation. This algorithm
has been shown to perform very well against other numerical algorithms and to yield good agreement with
experimental data in die entry domains [3,10,13,16]. The above numerical methods have also been used by
Feigl et al. [14,15] in micro–macro simulations of polymer flow based on particle tracking techniques.

In the microscopic part of the algorithm, the polymer stress in a given flow field represented by j is calculated
from the molecular-based rheological model described in the previous section. Since the flow is not homoge-
neous in general flow domains, the velocity gradient in Eqs. (3) and (4) depends on the position x as well as
t. Therefore, the equations of motion in the rheological model are interpreted to be in the Lagrangian form.
There are a few basic strategies for solving these equations. First, the equations can be kept in Lagrangian form
and the evolution of the configuration vectors can be computed using the particle tracking approach. In this
approach, ensembles of configuration vectors, representing the polymer molecules, are tracked in the flow along
a set of particle paths, and the stress in each element is computed as an appropriate average over all particle
paths passing through the element (e.g., [14,15,18,19]).

Alternatively, the individual configuration vectors, or polymer molecules, Qi(t), can be replaced by contin-
uous configuration fields, Qi(x, t), which are defined at every point, x, in the flow domain, and the governing
Lagrangian equations of motion given in Eqs. (3) and (4) can be written in Eulerian form as
oQ1ðx; tÞ
ot

þ uðx; tÞ � rQ1ðx; tÞ ¼ jðx; tÞ �Q1ðx; tÞ; t0 < t < t0 þ s1; ð9Þ

oQ2ðx; tÞ
ot

þ uðx; tÞ � rQ2ðx; tÞ ¼ �jyðx; tÞ �Q2ðx; tÞ; t0 < t < t0 þ s2. ð10Þ
This configuration field approach was first introduced by van den Brule and coworkers [21,28,34]. It has several
advantages over the particle tracking approach, including allowing smaller ensemble sizes (of the order of 103),
and is the approach adopted in this study.

The general outline of the simulation algorithm for the configuration field method is the same as in the stan-
dard simulation algorithm for homogeneous flows, given in Section 2.2. However, instead of evolving an
ensemble of configuration vectors, or polymer molecules, fQk

i ðtÞg
Np

k¼1, an ensemble of configuration fields,
fQk

i ðx; tÞg
N f

k¼1, is now evolved according to Eqs. (9) and (10). Similar to the Lagrangian approach, associated
with each configuration field in the ensemble is a lifetime during which the whole field evolves in the flow field
j(x, t) according to Eqs. (9) and (10). Once the lifetime is reached, the entire configuration field is destroyed
and regenerated according to the standard Gaussian distribution. When initially generated, the configuration
fields are spatially uniform.

For steady-state flow problems, such as the one considered in this study, the time steps in the macroscopic
and microscopic parts of the algorithm have different roles. The time step used in the momentum equation is
chosen to improve the convergence of the iterative procedure, while the time step used to discretize Eqs. (9)
and (10) should be chosen to compute the configuration fields, and hence polymer stress, accurately from the
current iterate’s guess to the velocity field. That is, in each iterate of the decoupled procedure, the configura-
tion fields and polymer stress are computed from the current guess to the steady-state velocity field, and not
from a true time-dependent history of the velocity field. In this case, the velocity gradient in Eqs. (9) and (10) is
independent of time. The evolution of the configuration fields continues until steady-state values of polymer
stress are reached, which usually takes two to three times the longest relaxation time of the fluid.

The equations of motion, Eqs. (9) and (10), are spatially discretized using the discontinuous Galerkin method.
The advantage of this method is that it reduces the coupling between elements and allows the semi-discrete equa-
tions for the configuration fields to be solved at the element level. This reduces the computational costs since it
avoids the necessity to solve large systems of equations for each of the Nf configuration fields in the ensembles.
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The weak forms of the Eqs. (9) and (10) are obtained by multiplying each equation by a test function w and
integrating over an arbitrary triangular element Xe. After integrating the convective term by parts twice, the
resulting weak equations can be stated as follows on each Xe:
Z
Xe

oQ1

ot
þ u � rQ1 � j �Q1

� �
� wdXe þ

Z
oXe�

ðn � uÞ QE
1 �Q1

� �� 	
� wdC ¼ 0; ð11ÞZ

Xe

oQ2

ot
þ u � rQ2 þ jy �Q2

� �
� wdXe þ

Z
oXe�

ðn � uÞ QE
2 �Q2

� �� 	
� wdC ¼ 0. ð12Þ
In these equations, oXe� denotes the inflow boundary of element Xe defined by
oXe� ¼ fx 2 oXe : uðxÞ � nðxÞ < 0g;

where n(x) is the outward pointing unit normal to the boundary oXe. Also, QE

i denotes the values of Qi in the
upstream neighboring element(s). This quantity is convected across the inflow boundary, oXe�, of the element
Xe. If the computational domain has an inlet boundary, then the values of QE

i in elements abutting this bound-
ary come from the predecessor flow, that is, the flow before the inlet boundary. At every cross-section that is
parallel to the inlet boundary, the predecessor flow is assumed to have the same velocity profile as that along
the inlet boundary. For the crossed-triangle element considered here, the predecessor flow is locally homoge-
neous, so that the standard simulation algorithm for homogeneous flows (Section 2.2) can be used to evolve
the configuration fields in the predecessor flow, and hence to compute QE

i in triangles with a side along the
inlet boundary.

The elements in the finite element mesh are numbered so that, in the absence of recirculation, the values of
QE

i convected into Xe from the neighboring upstream elements are known. If a region of recirculation does
exist, then at any time, the value of QE

i , and hence Qi, in an element within this region depends on itself.
To eliminate or reduce this dependency, an iterative process based on successive substitution can be used. That
is, instead of computing Qi only once per time step, the calculation can be iterated several times in this region,
with each iterate producing updated values of Qi and QE

i . If the recirculation region is weak, which is the case
in die entry flow problems such as the one considered here, then one or two iterates should be sufficient. In
fact, it was shown by Feigl et al. [14] that even taking the flow to be Newtonian in the elements contained
in the recirculation region of a die entry domain did not affect the results (for an Oldroyd-B fluid) or its com-
parison to the results of equivalent macroscopic calculations.

During the lifetimes s1 and s2, the configuration fields Q1(x, t) and Q2(x, t) are obtained by solving Eqs. (11)
and (12). Two types of spatial approximations for the configuration field variables are considered. These are
discussed below.

3.1. Piecewise constant approximation to configuration fields

First, the approximation space for Qi, i = 1, 2 is taken to be the space of piecewise constant polynomials on
the triangles of the mesh. The resulting stress field is then piecewise constant in each triangle. This choice is
consistent with the constant pressure approximation and linear velocity approximation on triangles in the
macro part of the algorithm. This choice is furthermore motivated by the fact that our standard, macro-macro
algorithm for solving viscoelastic flow problems using a macroscopic integral constitutive equation also
assumes triangle-wise constant stress, and this program has been shown to perform very well [3,10,13,16].
With this approximation, the convection of configuration fields in each triangle comes only through the
boundary integral term.

Denoting the approximations to Q1(x, t) and Q2(x, t) in triangle Xe by the 3 · 1 column vectors Qe
1 ¼ Qe

1ðtÞ
and Qe

2 ¼ Qe
2ðtÞ, respectively, yields the spatially discrete equations
dQe
1ðtÞ

dt
¼ ðcdþ jÞ �Qe

1ðtÞ þ b1ðtÞ; ð13Þ

dQe
2ðtÞ

dt
¼ ðcd� jyÞ �Qe

2ðtÞ þ b2ðtÞ; ð14Þ
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where
biðtÞ ¼ �
1

lðXeÞ

Z
oXe�

QeE
i ðtÞðn � uÞdC; i ¼ 1; 2;

c ¼ 1

lðXeÞ

Z
oXe�
ðn � uÞdC.
In these equations, the velocity u is the discrete velocity field which is known from the previous iterate of our
decoupled solution algorithm, and l(Xe) represents the area of triangle Xe. Furthermore, QeE

i denotes the
approximate values of Qi in the upstream neighboring triangle(s) or in the predecessor flow.

The above semi-discrete system of equations, together with initial conditions at t 0, forms a first-order, linear
initial value problem. The type of velocity–pressure finite element used in the macro part of the algorithm
leads to an attractive solution procedure for this system in steady flow, such as the die entry flow considered
here. Specifically, in steady flow, j and c are constant in each triangle, so that the coefficient matrix of this
system is constant. The solutions, Qe

1ðt; t0Þ and Qe
2ðt; t0Þ, to Eqs. (13) and (14) may therefore be written as fol-

lows in triangle Xe
Qe
1ðt; t0Þ ¼ ecðt�t0Þejðt�t0Þ �Qe

1ðt0Þ þ
Z t

t0
ecðt�sÞejðt�sÞ � b1ðsÞds; ð15Þ

Qe
2ðt; t0Þ ¼ ecðt�t0Þe�jyðt�t0Þ �Qe

2ðt0Þ þ
Z t

t0
ecðt�sÞe�jyðt�sÞ � b2ðsÞds. ð16Þ
The matrix exponentials involving j and j� depend on the eigenvalues, k, of these matrices. Since our finite
element guarantees pointwise incompressibility of the discrete velocity field, it follows that trace(j) = 0 and
the characteristic equation for both matrices reduces to k2 + det(j) = 0. Therefore, the eigenvalues k ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðjÞ

p
are either distinct and real (if det(j) < 0), pure imaginary (if det(j) > 0), or zero (if det(j) = 0).

Consequently, the matrix exponentials can be computed exactly and very efficiently via
ejDt ¼
dþ jDt; if k ¼ 0;

coshðkDtÞdþ sinhðkDtÞ
k j; if k 6¼ 0;

�

e�jyDt ¼
d� jyDt; if k ¼ 0;

coshðkDtÞd� sinhðkDtÞ
k jy; if k 6¼ 0.

(

Finally, the integrals in Eqs. (15) and (16) are evaluated by the trapezoid rule, making the time integration
scheme second order. Furthermore, the scheme is explicit since the values of QeE

i ðt þ DtÞ used to compute
bi(t + Dt) are known from previous processing of the upstream triangles. Time steps, Dt, are typically between
10�7 and 10�3.

3.2. Piecewise linear approximation to configuration fields

An alternative approximation to the configuration fields uses the space of linear polynomials in each
triangle. Unlike the piecewise constant approximation, this approximation allows the convection of the con-
figuration fields within the triangles. Let Q1i(x, t) and Q2i(x, t), i = 1, 2, 3, be the ith components of the con-
figuration fields Q1(x, t) and Q2(x, t), respectively, and let Qe

1i and Qe
2i be 3 · 1 column vectors containing the

coefficients in the triangle-wise linear expansion of Q1i and Q2i, respectively. Substituting linear approxima-
tions of Q1i and Q2i into Eqs. (11) and (12) yields a system of three equations for each coefficient vector Qe

1i

and Qe
2i of the form
M
dQe

1i

dt
þ ðC þ BÞQe

1i � K ijQ
e
1j ¼ F1i; ð17Þ

M
dQe

2i

dt
þ ðC þ BÞQe

2i þ K jiQ
e
2j ¼ F2i; ð18Þ
where the 3 · 3 matrices M, C, B and Kij, and the 3 · 1 vector Fji are given by
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M ¼
Z

Xe
wwy
� �

dXe;

C ¼
Z

Xe
wðwyujÞ

owy

oxj

� �
dXe;

K ij ¼
Z

Xe

jij wwy
� �

dXe;

B ¼ �
Z

oXe�
ðn � uÞ wwy

� �
dC;

Fji ¼ �
Z

oXe�
ðn � uÞwQeE

ji dC; j ¼ 1; 2.
The 3 · 1 vector w = w(x) contains the linear basis functions of the approximation space, and QeE
1i and QeE

2i ,
i = 1,2,3, denote the approximations to Q1i and Q2i, respectively, in the upstream neighboring triangle(s) cor-
responding to the inflow boundary oXe� of the current triangle.

In this case, the attractive time integration scheme of the piecewise constant approximation is lost. Therefore,
an explicit, second-order Runge–Kutta method is used to solve the initial value problem given in Eqs. (17) and
(18). Again, typical time steps are between 10�7 and 10�3.

4. Micro–macro simulation results

The performance of the micro–macro algorithm is evaluated by simulating the flow of the PIB solution in
an abrupt planar die entry domain. The algorithm is analyzed based on the dependence of the solution on
mesh size, ensemble size, type of approximation for the configuration fields, and computational cost. Further-
more, the simulation results are compared with known qualitative behavior of polymers, and the stress values
in the downstream fully developed flow region are compared with the simulation results from the standard
simulation algorithm described in Section 2.2. As previously mentioned, the values from the standard simu-
lation algorithm can be considered to be exact model predictions in steady shear flow at a given shear rate.
Finally, the simulation results are compared with available experimental data taken in related slit-die entry
experiments for the PIB solution performed by Quinzani et al. [32].

Following these experiments, the dimensions of the computational die entry domain were as follows: the
half-heights of the downstream and upstream channels were Hd = 0.32 cm and Hu = 1.27 cm � 4Hd, respec-
tively, and the lengths of the downstream and upstream channels were Ld = 13 cm � 40Hd and
Lu = 8 cm = 25Hd, respectively. (The width of W = 25 cm in the slit-die experiments was neglected in our
two-dimensional simulations.) The lengths of the upstream and the downstream channel proved to be long
enough to allow the flow to become fully developed for the flow rates considered.

The boundary conditions were as follows. The no-slip boundary condition was enforced along the channel
walls and the symmetry boundary condition was imposed along the centerline. Along the outlet boundary, the
appropriate (non-Newtonian) fully-developed velocity profile was specified. The velocity profile for the outlet
boundary was obtained, for a given centerline velocity, by computing the fully-developed flow of the PIB solu-
tion in a channel of uniform width which has the same height as the downstream channel of the die entry
domain. Along the inlet boundary, either a (Newtonian) parabolic velocity profile or the appropriate (non-
Newtonian) fully-developed velocity profile can be specified. Our numerical experiments showed that it was
sufficient to specify a (Newtonian) parabolic velocity profile, since the length of the upstream channel was long
2
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Fig. 2. Predicted streamline patterns in the abrupt die entry domain.
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enough for the appropriate fully-developed non-Newtonian velocity and stress profiles to be reached well
before the die entry region.

The simulations were performed on two finite element meshes. The first mesh contained 651 rectangular
macro-elements and 1357 velocity nodes, and the second mesh consisted of 1200 macro-elements and 2514
velocity nodes. (Recall that each rectangle consists of four triangular elements.) Each mesh is nonuniform with
smaller elements closer to the die entry. The typical size of the rectangles near the die entry region (non-dimen-
sionalized by Hd) was 0.375 · 0.2 in Mesh 1 and 0.3125 · 0.125 in Mesh 2, leading to an almost 50% reduction
in the area of the elements.

Results are presented for four volumetric flow rates which correspond to cases considered in the experiments.
Table 2 shows the flow rates, Q, used in the simulations as well as the corresponding Deborah numbers, De. The
Deborah number was defined as De ¼ k_c, where k ¼ ð

P
gkkkÞ=ð

P
gkÞ is a weighted average of relaxation times

and _c ¼ V =H d is an average shear rate in the downstream channel, based on the average velocity V ¼ Q=ð2H dÞ.

4.1. Analysis of die entry results

The simulation results are first evaluated numerically in terms of the qualities stated at the beginning of this
section. Unless otherwise noted, attention is first restricted to the results obtained using the piecewise constant
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Fig. 4. Comparison of stress values from the micro–macro simulation algorithm along several axial cross-sections (labeled by Y) for
De = 1.3. From bottom to top, the curves in each graph correspond to Y = 0.0 (centerline), 0.2, 0.4, 0.6, 0.8, 1.0 (wall of downstream
channel). The results from both meshes are shown and Nf = 2000. The exact model predictions in fully developed downstream flow are
shown as horizontal line segments labeled with symbols.
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approximation to the configuration fields. After that, the effect of the piecewise linear approximation is
considered.

Fig. 2 shows the streamline patterns from the micro–macro simulations for the flow rates considered. Also
shown is the streamline pattern for Newtonian flow. A significant vortex, which did not grow with increased
flow rate, is observed for the PIB solution. The presence of the vortex at the reentrant corner is typical for vis-
coelastic flows in abrupt contraction domains (cf. [13]). At all flow rates, the size of the vortex, v = Lv/(2Hu),
remained at approximately 0.24, where Lv is the vortex detachment length along the upstream wall. Lack of
vortex growth is often observed in planar abrupt contractions (cf. [13]). The size of the vortex in the experiment
was not reported. The streamline patterns were independent of mesh, ensemble size and type of approximation
to the configuration fields.

The mesh and ensemble size independence of the velocity field is also evidenced in Fig. 3, which compares
the centerline velocity profiles for both meshes (Fig. 3(a)) and for three different ensemble sizes (Fig. 3(b)). The
die entry is at x = 0, with x < 0 and x > 0 corresponding to the upstream and downstream channels, respec-
tively. This figure also shows that there is a velocity overshoot that occurs within the die which increases with
flow rate. This behavior is again typical for viscoelastic flows in abrupt die entry domains. The axial velocity
profiles at various cross-sections also showed mesh and ensemble size independence. This is illustrated in
Fig. 3(c) which shows the fully developed velocity profiles downstream at x = 10 cm for both meshes. The
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shown and Nf = 2000. The exact model predictions in fully developed downstream flow are shown as dashed horizontal line segments
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shear-thinning behavior of the fluid is seen by comparison with the Newtonian velocity profiles at the same
flow rates.

The stress values, s12 and N1 = s11 � s22, computed from the micro–macro simulations are plotted along
lines that are parallel to the centerline and run through the whole domain, from inlet boundary to outlet
boundary. Each line is labeled by its distance, Y, from the centerline, normalized by the half-height of the
downstream channel. The line Y = 0 represents the centerline and Y = 1 represents the line that coincides with
the wall of the downstream channel.

Figs. 4 and 5 show the values of s12 and the first normal stress difference N1 = s11 � s22 for several Y values
for the lowest and highest flow rate considered. The results shown were computed with Nf = 2000 configura-
tion fields and the curves from both meshes are shown. The figures show that the stress values are mesh inde-
pendent, except close to the die entry in some cases.

In each graph of Figs. 4 and 5, the dashed horizontal lines labeled with the symbols represent the exact
model predictions computed in homogeneous shear flow from the standard simulation algorithm. For each
Y value, the shear rate used in the standard algorithm was taken to be the (essentially) constant value of shear
rate computed by the micro–macro algorithm in the downstream channel. The figures show that there is very
good agreement between the exact model predictions for s12 and N1 and the micro–macro results. Possible
exceptions are along the wall of the downstream channel or perhaps along the centerline at the high flow rate.
This discrepancy is not due to the ensemble size, since increasing Nf had only a small, if any, effect on the stress
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values and their comparisons to the exact model predictions. This is shown in Fig. 6. As discussed shortly, this
discrepancy is also not due to the piecewise constant approximation to the configuration fields.

A large contributing factor to the discrepancy near the computational boundary could be due to the
smoothing and extrapolation postprocessing of the discontinuous velocity gradient and stress fields as dis-
cussed in Section 3. This hypothesis is based on the fact that good agreement is obtained except possibly along
the boundary, and on our past experience with the smoothing and extrapolation postprocessing scheme when
solving die entry flow problems using macroscopic viscoelastic constitutive equations. Note that if this hypoth-
esis is true, then mesh refinement close to the wall should improve the agreement. Figs. 4 and 5 show that mesh
refinement does decrease the error in N1 at the centerline in the downstream shear flow, bringing the values
closer to zero. However, mesh refinement did not significantly improve the agreement along the wall in the
downstream channel. It could be that additional mesh refinement close to the channel wall is needed in order
to see significant improvements. Further investigation is needed to resolve this issue definitively.

The effect of a piecewise linear approximation to the configuration fields is now considered. First, the veloc-
ity field was seen to be mostly independent of whether a triangle-wise constant or linear approximation to the
configuration fields was used. This is shown in Fig. 7 which compares the results of these two approximations
for Nf = 2000 along the centerline and at a cross-section at x = 10cm in the downstream channel. Fig. 7(a)
shows that at the lower or moderate flow rates, the centerline velocities coincide, while at the higher flow rates,
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the centerline velocity computed using the piecewise linear approximation to the configuration fields is some-
what larger close to the die entry. Both graphs show that away from the die entry, the respective velocities
coincide at all flow rates.

The dependence of the stress field on the type of configuration field approximation is illustrated in Figs. 8
and 9 for De = 1.3 and De = 2.6, respectively. As before, each pair of curves corresponds to values of s12 and
N1 at (dimensionless) constant distances, Y, from the centerline. The figures show that s12 is virtually indepen-
dent of the order of the approximation for configuration fields. The values of N1 also agree generally well. The
exceptions are near the die entry, particularly closer to the centerline.

The performance of the micro–macro algorithm was also evaluated in terms of its computational costs. It
was found that the computational time per triangle per iterate was approximately proportional to the ensem-
ble size and the number of elements. Moreover, using the piecewise linear approximations to the configuration
fields required approximately 2.5 times more computational time than using the piecewise constant approxi-
mations for a given mesh and ensemble size. This factor of 2.5 is due primarily to the fact that the time inte-
gration scheme used for the piecewise linear approximation requires twice as many time steps, or function
evaluations, as that required by the piecewise constant approximation, although both schemes are second
order. This illustrates one benefit of working with the piecewise constant approximation; more precisely,
because of the type of velocity and pressure approximation, the piecewise constant approximation to the con-
figuration fields leads to an efficient time integration scheme. The remaining increase in computational time
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when going from a piecewise constant approximation to a piecewise linear approximation to the configuration
fields is due to the threefold increase in the number of configuration field variables (degrees of freedom) and
the temporally discretized equations involving them. The storage requirements for the piecewise linear approx-
imation are also larger due to the threefold increase in the number of configuration field variables. The rele-
vance of any differences that exist between the simulation results from the two types of approximations to the
configuration fields should be judged in view of the computational costs associated with each.

4.2. Comparison with experimental data

The micro–macro simulation results are now compared with the experimental data reported by Quinzani
et al. [32]. The experimental data consisted of the velocity, elongation rate and first normal stress difference
along the centerline of the slit-die entry domain. The velocity was measured using laser doppler velocimetry
while the stress values were measured using flow-induced birefringence. The elongation rates were derived
from the measured velocity field. The experimental data displayed here were taken from Quinzani et al. [32].

We point out that the Deborah numbers, De, used in the three-dimensional slit-die experiments were
slightly larger than the Deborah numbers used in the two-dimensional simulations. This difference resulted
from how we chose the outlet boundary velocity profiles in the simulations. Specifically, we computed an out-
let velocity profile as the fully-developed flow of the model fluid in a channel of constant height with a specified
centerline velocity which we took from the experiment.
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A comparison of the predicted centerline velocity and elongation rates with the experimental data is given
in Fig. 10. In each graph, the open symbols represent experimental data. In Fig. 10(a), the computed centerline
velocity is shown from both types of approximation to the configuration fields. This graph shows relatively
good agreement between simulation and experiment in the die entry region. One notable discrepancy is that
the experimental data does not indicate the significant velocity overshoot that the simulation results show at
the highest flow rate and that is typical of polymeric fluids.

Fig. 10(b) shows the comparison of centerline elongation rates. Simulation results, indicated by the closed
symbols, are shown only for the case of piecewise constant approximation to the configuration fields. Both the
simulation and the experiment show that the maximum elongation rate is reached immediately before the die
entry which is a characteristic behavior in die entry flow [13]. Generally good agreement between the com-
puted elongation rates and the experiment is observed. The discrepancy in values is due to the difference in
the velocity fields close to the die entry. The simulation predicts a more rapid increase in the velocity field than
the experiment indicates. The centerline elongation rates resulting from the piecewise linear approximation to
the configuration fields are graphically identical at the lower flow rates and reach a higher maximum at the
highest two flow rates. This is clear from the more rapid increase in centerline velocity at these flow rates
immediately before the die entry, as shown in Fig. 10(a).
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The comparison between the computed and measured centerline first normal stress difference, N1, is shown
in Fig. 11. Simulation results are shown from the piecewise constant approximation to the configuration fields
(a) and the piecewise linear approximation (b). The closed symbols represent the simulation results. Both
graphs show that the simulation overpredicts the values of N1 close to the die entry and, in both cases, the
discrepancy between simulation and experiment increases with increased flow rate. The graphs also show a
reduction in the computed values of N1 close to the die entry when the higher order approximation is used,
and this reduction leads to better agreement with the experimental data.

In general, the piecewise linear approximation provides better agreement with experiments. Although
Fig. 10 indicates that the piecewise constant approximation gives slightly better agreement with the experimen-
tal centerline velocity in a limited case (i.e., close to the die entry and at the highest flow rate), this difference in
agreement is relatively small compared to the better agreement that the piecewise linear approximation gives
to the experimental centerline normal stress difference at all flow rates considered (Fig. 11).

There are several possible reasons for the discrepancy between the simulated and measured centerline veloc-
ity and first normal stress difference. These include (i) inadequacies in our two-dimensional simulation of the
three-dimensional experiments, (ii) the inability of the rheological model to describe the PIB fluid sufficiently
well, (iii) numerical error, and (iv) experimental error. We have already mentioned one possible source of
numerical error: our postprocessing scheme may produce errors in N1 along the computational boundary,
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Fig. 11. Comparison of computed and measured centerline first normal stress difference. Simulation results are from piecewise constant
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Quinzani et al. [32]. For graphical clarity, a symbol is not shown at every simulation and experimental data point.
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such as the centerline. Another source of numerical error is the approximation error related to the discretiza-
tion of the configuration fields since, as Fig. 11 shows, the values of centerline N1 near the die entry depend on
the type of spatial approximation to the configuration fields. Perhaps higher order approximations for the
configuration fields (and possibly velocity) would further improve agreement with experiments in this prob-
lematic region of the domain. Finally, the rheological model is probably a contributing factor to the discrep-
ancy between simulation and experiment. The dynamics of the rheological model presented in Section 2 are
most likely an oversimplification for the fluid and require improvements before the model can predict more
accurately all aspects of flow in complex domains such as the die entry domain.

5. Summary and conclusions

A multiscale, or micro–macro, algorithm for simulating the flow of a polymeric fluid was described and
tested numerically. The multiscale model consisted of the mass and momentum balance equations from con-
tinuum mechanics and a rheological model for polymer stress which combines aspects of network, reptation
and continuum models. The algorithm iterates two main steps, corresponding to the macro and micro parts of
the algorithm. In the macro part of the algorithm, the velocity and pressure fields are updated by solving the
mass and momentum balance equations using standard finite element techniques, where the polymer stress is
treated as a known pseudo-body force. In the micro part of the algorithm, the updated velocity field is used to
compute an update to the polymer stress from the rheological model. This was done using stochastic simula-
tion techniques based on the configuration field formulation of the evolution equations for the two configu-
ration variables in the model. The discontinuous Galerkin method was used to discretize these evolution
equations spatially, using either triangle-wise constant or linear approximations. The temporal discretization
depended on the type of configuration field approximation, but in both cases, was second order.

The algorithm was evaluated numerically by simulating the flow of a concentrated PIB solution in a planar
abrupt die entry domain. At each flow rate considered, simulations were performed using two meshes (stan-
dard and refined), three ensemble field sizes, and the two types of configuration field approximation. The algo-
rithm’s performance was evaluated in terms of the dependence of the results on these three factors, and in
terms of its qualitative and quantitative predictions and the computational cost.

It was found that the velocity and stress fields were virtually independent of mesh size and configuration
field ensemble size. There was some dependence of the velocity and stress on the type of configuration field
approximation. Away from the die entry, the velocity and stress from the two types of approximation always
agreed. However, close to the die entry, where the velocity and its gradient vary most rapidly, discrepancies
existed in some cases. Specifically, at the higher flow rates, the linear approximation predicted a faster increase
in centerline velocity and a slightly larger overshoot. Moreover, the linear approximation generally predicted
smaller normal stress differences in the die entry region, particularly closer to the centerline. The shear stress,
on the other hand, was seen to be virtually independent of the type of configuration field approximation.

In all cases, the algorithm predicted the correct qualitative behavior of polymeric fluids in this type of flow
domain, e.g., significant vortex in the corner of the upstream channel, centerline velocity overshoot near die
entry, shear-thinning velocity profiles and large normal stress differences in the fully-developed downstream
channel flow. Moreover, the polymer stress values in the fully-developed downstream channel flow agreed
quantitatively with the exact model predictions computed from the standard simulation algorithm at the cor-
responding shear rate.

Comparisons were also made with available experimental data on the PIB solution taken in a slit-die entry
domain. While the centerline velocity agreed relatively well, the simulations overpredicted the centerline normal
stress difference close to the die entry. This discrepancy was considerably smaller when the linear configuration
field approximation was used, as opposed to the constant approximation. This indicates that numerical approx-
imation error in the configuration fields may be a large cause for the discrepancy between simulation and exper-
iment, and that the discrepancy may be further reduced with higher order approximations or additional mesh
refinement. Given that there is currently no rheological model that is completely satisfactory in terms of com-
parison with experimental data in complex flows, another significant contributing cause for the discrepancy
could be the rheological model. Indeed, one purpose and motivation of performing micro–macro simulations
is to test microscopic-based models in complex flows and thereby assist in model development.
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Finally, in terms of computational costs, there was a significant advantage in working with the piecewise
constant configuration field approximation for the given model. The computational time per iterate was nearly
2.5 times higher when the linear configuration field approximation was used compared to the constant approx-
imation. This is mostly due to the fact that the pointwise incompressibility guaranteed by our particular veloc-
ity–pressure finite element leads to an attractive and efficient second-order time integration scheme for the
spatially discrete evolution equations in the piecewise constant case. In short, only half as many function eval-
uations, or time steps, are needed for the constant approximation compared to the linear approximation, using
a second-order time integration for both methods. Moreover, the linear approximation requires the storage
and processing of three times as many degrees of freedom for the configuration variables.

The question of which configuration field approximation is better depends on the relative priorities of the
evaluation criteria. Based on the performance of the two approaches, a more optimal algorithm may be found
by combining them, that is, by using the piecewise constant approximation to the configuration fields though-
out most of the domain and the piecewise linear approximation in regions of high velocity gradient (e.g., near
the die entry). In this way, the higher order spatial approximation of the latter approach can be achieved in the
high gradient region while the efficiency of the the former approach can be retained as much as possible.
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[11] K. Feigl, H.C. Öttinger, The equivalence of the class of Rivlin–Sawyers equations and a class of stochastic models for polymer stress,

J. Math. Phys. 42 (2) (2001) 796–817.
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[24] M. Laso, H.C. Öttinger, Calculation of viscoelastic flow using molecular models: the CONNFFESSIT approach, J. Non-Newtonian

Fluid Mech. 47 (1) (1993) 1–20.
[25] F.A. Morrison, Understanding Rheology, Oxford University Press, New York, 2001.
[26] J. Nagtigaal, D.M. Parks, J.R. Rice, On numerically accurate finite element solutions in the fully plastic range, Comp. Methods Appl.

Mech. Eng. 4 (1974) 153–178.
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[30] H.C. Öttinger, M. Laso, Smart polymers in finite element calculations, in: P. Moldenaers, R. Keunings (Eds.), Theoretical and

Applied Rheology. Proceedings of the XIth International Congress on Rheology, vol. 1, Elsevier, Amsterdam, 1992, pp. 286–288.
[31] F. Petruccione, P. Biller, A consistent numerical analysis of the tube flow of dilute polymer solutions, J. Rheol. 32 (1988) 1–21.
[32] L.M. Quinzani, R.C. Armstrong, R.A. Brown, Use of coupled birefringence and LDV studies of flow through a planar contraction to

test constitutive equations for concentrated polymer solutions, J. Rheol. 39 (6) (1995) 1201–1228.
[33] L.M. Quinzani, G.H. McKinley, R.A. Brown, R.C. Armstrong, Modeling the rheology of polyisobutylene solutions, J. Rheol. 34

(1990) 705–748.
[34] A.P.G. van Heel, M.A. Hulsen, B.H.A.A. van den Brule, Simulation of Doi-Edwards model in complex flow, J. Rheol. 43 (5) (1999)

1239–1260.


	Development and evaluation of a micro-macro algorithm for the simulation of polymer flow
	Introduction
	Rheological model
	Model description
	Material description and simulation algorithm in homogeneous flow

	Micro-macro algorithm
	Piecewise constant approximation to configuration fields
	Piecewise linear approximation to configuration fields

	Micro-macro simulation results
	Analysis of die entry results
	Comparison with experimental data

	Summary and conclusions
	Acknowledgment
	References


